Fuzziness based sample categorization for classifier performance improvement

نویسندگان

  • Xizhao Wang
  • Rana Aamir Raza
  • Ai-Min Fu
چکیده

This paper investigates a relationship between the fuzziness of a classifier and the misclassification rate of the classifier on a group of samples. For a given trained classifier that outputs a membership vector, we demonstrate experimentally that samples with higher fuzziness outputted by the classifier mean a bigger risk of misclassification. We then propose a fuzziness category based divide-and-conquer strategy which separates the high-fuzziness samples from the low fuzziness samples. A particular technique is used to handle the high-fuzziness samples for promoting the classifier performance. The reasonability of the approach is theoretically explained and its effectiveness is experimentally demonstrated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A research on classification performance of fuzzy classifiers based on fuzzy set theory

Due to the complexities of objects and the vagueness of the human mind, it has attracted considerable attention from researchers studying fuzzy classification algorithms. In this paper, we propose a concept of fuzzy relative entropy to measure the divergence between two fuzzy sets. Applying fuzzy relative entropy, we prove the conclusion that patterns with high fuzziness are close to the classi...

متن کامل

Intelligent and Robust Genetic Algorithm Based Classifier

The concepts of robust classification and intelligently controlling the search process of genetic algorithm (GA) are introduced and integrated with a conventional genetic classifier for development of a new version of it, which is called Intelligent and Robust GA-classifier (IRGA-classifier). It can efficiently approximate the decision hyperplanes in the feature space. It is shown experime...

متن کامل

Automatic Categorization of Patent Applications Using Classifier Combinations

In this paper we explore the effectiveness of combining diverse machine learning based methods to categorize patent applications. Classifiers are constructed from each categorization method in the combination, based on the document representations where the best performance was obtained. Therefore, the ensemble of methods makes categorization predictions with knowledge observed from different p...

متن کامل

Improvement of Chemical Named Entity Recognition through Sentence-based Random Under-sampling and Classifier Combination

Chemical Named Entity Recognition (NER) is the basic step for consequent information extraction tasks such as named entity resolution, drug-drug interaction discovery, extraction of the names of the molecules and their properties. Improvement in the performance of such systems may affects the quality of the subsequent tasks. Chemical text from which data for named entity recognition is extracte...

متن کامل

ارتقای کیفیت دسته‌بندی متون با استفاده از کمیته‌ دسته‌بند دو سطحی

Nowadays, the automated text classification has witnessed special importance due to the increasing availability of documents in digital form and ensuing need to organize them. Although this problem is in the Information Retrieval (IR) field, the dominant approach is based on machine learning techniques. Approaches based on classifier committees have shown a better performance than the others. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Intelligent and Fuzzy Systems

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2015